
T. Clune

  Establish consensus on desirable modifications to
implementation of tracers in modelE.
◦  Defer on issues that lack strong support and/or clear

implementation mechanism.
  Improve long-term scientific productivity.
◦  Short term inconvenience as an investment in future.

  Issues with existing tracer interfaces
  Straw-man proposal for new interfaces
  Tangential tracer issues – half-baked
◦  Sources and diagnostics
◦  Chemistry

  Actions

  Difficult to introduce new tracer
  Difficult to introduce new tracer property
  Tracer “thrashing”
◦  Independent efforts “stepping on each-other’s toes
◦  I.e. you are forced to “see” everyone else’s tracers

  Static specification
◦  Must recompile to modify tracer or property

  Hard to learn/understand implementation
  Separate infrastructure for ocean tracers

  Would like to be able to enable sets of tracers
◦  E.g. moments

  Intrusion into physics components
◦  Obscures legibility and degrades maintainability

  Inconsistent/duplicated functionality
◦  Format of source files
◦  Source/sink diagnostics

  Fragile constructs (programming by “coincidence”)
◦  Multiple changes must be coordinated for consistency
◦  E.g. some source diagnostics must precisely duplicate

order of sources
  Implementation is fractured across

  multiple files/procedures
  multiple variables/arrays

  Fine-grained redundancy.
◦  E.g. lots of ‘k = k + 1’

  Heavy reliance upon CPP
◦  Obscures legibility
◦  Impedes testing

  Switch from source code to data file
◦  More dynamic – change at run time
◦  More flexible – choose human friendly format
◦  More extensible

  Proposed format similar to rundeck parameters:
◦  Sequence of “key-value” pairs
◦  Need separator between tracers (duplicate keys)

<header>
!END HEADER
----< separator >---------
name = Air
 molecularMass = 28.9655d0 ! in line comment

----< separator >---------
name = Rn222
 molecularMass = 222.d0
 ntm_power = -21
 radioactiveDecayRate = 2.1d-6 ! sec^-1

----< separator >---------
name = Unobtainium
 molecularMass = -100.d0
 price = 1.d+14 ! $/g

TracerProperties.txt

  Now very easy – just add new “key” under
relevant tracers. E.g.

  Note: no need to provide values for tracers that
lack a given property.
◦  Obviates need for default values

name = H2S
 …
 smells_like_eggs = .true.
 …

  Desire to treat tracer property file as a database
◦  Same file regardless of rundeck/experiment
◦  Edit only to extend

  Currently model uses CPP to control tracers used
◦  CPP not feasible for new approach

  Use filtering to select tracers for given rundeck:
◦  Rundeck specifies tags/filters (e.g. ‘dust’, ‘isotopes’, etc)
◦  At initialization only tracers with those tags will be used
◦  Can alter at _run_ time which tracers are used

  Note: CPP is still used elsewhere in model
◦  True dynamic control only possible if CPP is eliminated

1.  Tracers will be represented by an array of derived
type (data structure):
 type (Tracer_type) :: activeTracers(:)

2.  Accessing tracers:
 use Tracer_mod, only: activeTracers(:)

3.  Tracer lookup:
 idx = getIndex(tracers(:), name=‘SO2‘)

4.  Getting property value:
 call getValue(tracers(i), ‘isotopeIndex‘, mass)
or for a set of tracers:
 call getValue(tracers(:), ‘name‘, names(:))

1.  Check if tracer has a given property:
 flag = hasProperty(tracers(i),‘isDust‘)

2.  Subsetting tracers:
 type (Tracer_type), pointer :: subset(:)
 subset => getWithProperty(tracers, `Lerner`)
 subset => getWithValue(tracers, `Lerner`,.true.)

or
 integer, pointer :: indices(:)
 indices => getIndices(tracers, `radioactiveDecayRate`)

3.  Counting
 num = countWithProperty(tracers, ‘tr_wd_TYPE’)
 num = countWithValue(tracers, ‘tr_wd_TYPE’, nWater)

  Multiple tracer input files?
◦  Each sub-discipline manages “private” set
◦  Same infrastructure for ocean tracers?

  Temporarily include a variant tracer
  …

  How to verify initial conversion from source code?
◦  A rundeck to run them all? (apologies to Tolkien)
◦  Can we determine disjoint tracer sets a priori?

  Do we need mandatory properties?
◦  E.g. molecularMass, ntm_power
◦  Should we detect missing values for mandatory properties?

  Do we need to allow for default values?
  How to guard against misspelled properties?
◦  Provide list of allowed properties
  Rundeck? Input file? Source code?
◦  Allow alternate spellings/abbreviations?

  Will performance be adequate?

  Can we agree on a convention for file format?
◦  Separator, comment characters, header, etc.
◦  Do integer, real, string, and logical cover everything?

  Where should tracer property files be stored
◦  Repository? (i.e. with source code)
◦  Data directory?

  Opportunity to improve property names? E.g.
 tr_mm => molecularMass
 tr_wd_TYPE => wetDepositionType

  Some file metadata is hardcoded in source
◦  E.g. Linear ordering, connection to jls diagnostics
◦  Reduces flexibility
  E.g. difficult to add/remove source for experiment
◦  Possible source of errors – requires “coincidence”

  Hardcoded data formats (multiple formats are ok)
◦  Should use common interfaces
◦  Minimally should contain appropriate embedded metadata

  Multiple mechanisms for accessing source files
◦  Possible unification?

  Some issues similar to tracer property issues
◦  Scattered infrastructure: multiple files/arrays
◦  Long “SELECT CASE” block
◦  No partitioning among sub-disciplines

  Introduce data structure (derived type)
◦  Represents abstraction of a data source
◦  Contains elements that specify any metadata not

available from actual source file
◦  Provide multiple initialization mechanisms
  Different types of sources can be registered in different ways

  Set of all tracer sources would be array of structs
  Some metadata for diagnostics could be

automated
  How to drive initialization?
◦  Source?
◦  Data file? (similar to tracer properties)

  Significant source code duplication
  Frequent trivial variations: E.g.

  “per-type” defaults could significantly simplify diag.
specifications. (e.g. sname, lname)

 case ('Pb210')
 …
 jls_decay(n) = k ! special array for all
 sname_jls(k) = 'Decay_of_'//trname(n)
 lname_jls(k) = 'Loss of Pb210 by decay'

 case ('Rn222’)
 …
 jls_decay(n) = k
 sname_jls(k) = 'Decay_of_'//trname(n)
 lname_jls(k) = 'LOSS OF RADON-222 BY DECAY'

  Specification file similar to tracer properties
◦  When you have a hammer, everything becomes a nail …

 tracer = Rn222
 type = decay
 shortName = Decay of $
 longName = LOSS of RADON-222 BY DECAY
 power = -26
 units = kg/s/mb/m^2
 weighting = 3 ! Undocumented option
 …

Unnecessary?
Derived from “type”?

  Source duplication
  Hardwired reaction indices
  Ad hoc corrections/implementation

  Tracer logic often obscures primary physics
implementation
◦  Particularly severe in some components – e.g. PBL

  Can anything be done?
◦  In some cases, tracer logic duplicates primary logic
  Create subroutine for duplicated logic
  Call once for physics, once for tracers
◦  Add new “export” quantities for physics component
  Tracer actions can then be done elsewhere

  Implement new tracer infrastructure
◦  Straightforward ~ 1 month (Tom)

  Migrate modelE to use new tracer infrastructure
◦  Verification tests?
◦  Who?

  Implement new tracer source infrastructure?
◦  Set up a follow-up meeting on this?

  Further refine concepts for tangential bits

•  Steps
1.  Increment “ntm_...” (e.g. ntm_o18, ntm_gasexch,…)
2.  Declare new global integer index for tracer lookup

(n_air, n_CO2n, n_CFCn, …)
3.  Add CASE statement for new name
4.  Specify any non-default values for of existing tracer

properties
5.  Introduce new conditional (usually CPP) to control

usage per rundeck
Potential secondary changes

1.  Add related sources/diagnostics

•  Steps
1.  Create new global array of size “ntm” to store values

for property (usu. real*8)
2.  Provide default value before top of tracer select case
3.  Override default value for all non-default cases
4.  Introduce logic to use property elsewhere

•  Potential secondary issues
1.  Additional logic if property values depend on rundeck
2.  May need counter for number of tracers with property

•  Multiple types, but some fairly common themes
•  Less need for user-defined attributes.

– Use static data structure
– Might still be useful for fine-grained control

•  Use a more object-based approach to structure:
– Eliminate ad-hoc collection of global arrays
– Co-locate diagnostic data and procedures
– Use registration to “add” new diagnostic
– Tracer attributes can be used to effect which diagnostics

are active.
•  E.g. If a diag only applies to species A,B, and C. Diag can

specify attribute to select those tracers.

Current Proposed

•  In source code
•  Each attribute stored in

unique global array
•  Implementation scattered in

multiple files.
•  “Tracers” are disconnected

collection of attribute arrays
and 4D state.

•  Activation/deactivation of
individual tracers with
compile time CPP tokens

•  No procedure to “find”
tracer “ABC”

•  Input file/files
•  Attribute stored in “hash” (key-

value pairs)
•  Implementation in single

source file.
•  “Tracers” are 1D list of tracer

objects and 4D state.*
•  Activation/deactivation of

tracers specified with run-time
parameter which queries
relevant attribute

•  Will provide lookup procedure
to return index of tracer “ABC”

Current Proposed

  Loop over tracers. Apply
operation if given
attribute is nonzero (or
non default).

  Loop over tracers. Apply
operation if tracer has
given attribute.
◦  If (hasAttribute(n,

‘decayRate’) …
  Look-up value for

attribute.
◦  decayRate = get(n,

‘decayRate’)

•  May be useful to have registry of allowed attributes in the source code.
–  Guards against typos in specification input.
–  Requires recompilation for new attributes

•  File format should be similar to rundeck and ESMF config files:
–  <attribute> = <value>

•  Might make sense to have separate tracer spec files for subsets of tracers
–  Only if coherent non-overlapping sets can be agreed upon

•  Can have “duplicate” tracers if researcher wants to customize without impacting
other results.

•  Need procedure to count number of tracers with given attribute
n = countAttribute(tracers, attribute)

•  Intermediate time frame must coordinate CPP tokens with runtime attributes:
–  #ifdef TOKEN_X

logical :: runtime_X = .true.
#else
logical :: runtime_X = .false.
#endif

•  Long time frame – reduce reliance upon CPP tokens.
–  runtime_X becomes an input parameter.
–  Can proceed one token at a time

•  Less urgent how the 4D array of tracer values is
implemented:
– Side-stepping overall modelE “registry” of arrays for now.
– Relatively less complex than the meta-data
– Must allocate after all tracer specs have been entered.
– Could have 3D pointers in each tracer object

•  ESMF?
– Provides hash via ESMF_Attributes.
– Probably cumbersome as an interface given heavy use in

modelE
– Could be the back-end implementation though.

